
Recovering a Website’s Server Components from the
Web Infrastructure

Frank McCown
Harding University

Computer Science Department
Searcy, Arkansas, USA 72149
fmccown@harding.edu

Michael L. Nelson
Old Dominion University

Computer Science Department
Norfolk, Virginia, USA 23529

mln@cs.odu.edu

ABSTRACT
Our previous research has shown that the collective behavior
of search engine caches (e.g., Google, Yahoo, Live Search)
and web archives (e.g., Internet Archive) results in the un-
coordinated but large-scale refreshing and migrating of web
resources. Interacting with these caches and archives, which
we call the Web Infrastructure (WI), allows entire websites
to be reconstructed in an approach we call lazy preservation.
Unfortunately, the WI only captures the client-side view of a
web resource. While this may be useful for recovering much
of the content of a website, it is not helpful for restoring
the scripts, web server configuration, databases, and other
server-side components responsible for the construction of
the website’s resources.

This paper proposes a novel technique for storing and re-
covering the server-side components of a website from the
WI. Using erasure codes to embed the server-side compo-
nents as HTML comments throughout the website, we can
effectively reconstruct all the server components of a web-
site when only a portion of the client-side resources have
been extracted from the WI. We present the results of a
preliminary study that baselines the lazy preservation of ten
EPrints repositories and then examines the preservation of
an EPrints repository that uses the erasure code technique to
store the server-side EPrints software throughout the web-
site. We found nearly 100% of the EPrints components were
recoverable from the WI just two weeks after the repository
came online, and it remained recoverable four months after
it was “lost”.

Categories and Subject Descriptors: H.3.5 [Informa-
tion Storage and Retrieval] Online Information Services: Web-
based services; H.3.7 [Information Storage and Retrieval]
Digital Libraries: Collection

General Terms: Design, Experimentation, Measurement

Keywords: backup, digital preservation, search engine caches,
web archiving, web server

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JCDL’08, June 16–20, 2008, Pittsburgh, Pennsylvania, USA.
Copyright 2008 ACM 978-1-59593-998-2/08/06 ...$5.00.

1. INTRODUCTION
As the most popular publishing medium today, the Web

has unleashed exponential growth of mankind’s creative out-
put, and along with it, an abundance of curatorial and preser-
vation challenges. Individuals do not recognize their per-
sonal responsibility for preserving personal data like web-
sites: a 2006 survey indicates only 57% of individuals who
store personal data on their computers ever backup their
data [5], and even experts who work on backup storage tech-
niques admit they do not regularly backup their personal
files [7]. Webmasters who rely on ISPs and web hosting
companies to preserve their websites are often surprised and
disappointed to discover that these organizations are not im-
mune to viruses, hackers, bankruptcy and run-ins with the
law [9, 13, 18]. Even if a great deal of personal care and en-
ergy are expended to properly ensure the availability of the
individual’s or organization’s website, the website may still
become defunct once it is no longer needed, financial pres-
sures dictate ending the website or the maintainer dies [13].
In this case, interested third parties may have few means
available to resurrect the website since they typically do not
have access to backups.

In response to the ephemeral nature of the Web, we have
created Warrick, a web-repository crawler which can re-
construct lost websites from search engine caches and web
archives (collectively known as the Web Infrastructure or
WI) [22]. Warrick is currently being used by the public to
reconstruct over 100 websites a month using Google, Live
Search, Yahoo and the Internet Archive (IA) repositories
[21]. Some individuals use Warrick to recover their own lost
websites, and others use it to recover websites that once
belonged to third parties.

In a survey we conducted of Warrick users [13, 18], some
have lamented that the functionality behind their dynamic
websites was not recoverable. Recovering the content is of-
ten useful, but recovering the scripts, databases, and other
servers-side components would be ideal for restoring the
functionality of the lost website. Search engines and web
archives generally use web crawlers to fill their repositories,
and because server components are not accessible to web
crawlers, this content cannot be recovered from the WI.

In this paper, we review methods that could be used
to recover server-side components from the WI and per-
form a proof-of-concept experiment with a novel method in-
spired by steganography, where information is hidden within
a larger context [11]. Our method uses erasure codes which
have been used in a variety of applications like RAID sys-
tems [25], secret-sharing [10] and information dispersal [26].

Erasure codes are used to divide a message into blocks where
the original message can be recovered from a subset of those
blocks [10]. We split the server components into many pieces
using erasure codes, then inject those pieces into crawlable
portions of our website in an unobtrusive way, thus using the
WI as a back-up system when they crawl and cache/achive
our website. Even when only a small number of pages can be
recovered from the WI, the entire set of server components
is recoverable. In our experiment, we installed an EPrints
repository and obserbed that nearly 100% of the server com-
ponents were recoverable from the WI just two weeks after
the repository came online; the components remained recov-
erable three months after the repository was “lost”.

2. BACKGROUND AND RELATED WORK
Web archiving projects have attempted to capture historic

snapshots of the Web for posterity and research purposes,
and search engines often make cached copies of web pages
available in case of transient errors. Both web archives and
search engines primarily rely on web crawling to fill their
repositories. Web crawling is a long-standing method for
creating a snap-shot of a website’s generated content, but
it is often limited to pages that are not protected from the
robots exclusion protocol [12] and pages that remain hidden
in the deep web [4].

As pointed out by Masanès [14], some archiving projects
like the Internet Archive and Sweden’s Kulturarw3 [2] have
focused on crawling a wide range of websites using primarily
automated methods. Other archives have used more labor-
intensive processes to guarantee completeness. For example,
the France’s BnF archive augments crawling with “legal de-
posit”; archive staff works directly with webmasters to de-
posit their websites within the archive so ‘deep web’ sites
will remain functional in the future [1]. Search engines have
also made strides in indexing deep web content [17], but we
are unaware of any effort to cache web server components.

In previous work [16, 22], we have shown that the WI can
be used effectively to recover a large number of websites if
they were lost today. The WI provides lazy preservation:
large-coverage preservation for the Web with no effort re-
quired of the content producer. All types of resources (html,
PDF, images, etc.) are accessible from the WI if they be-
come inaccessible from the Web. Recent experiments have
shown that if a typical website were to become lost with no
backup, 61% of its resources (77% textual, 42% images and
32% other) could be recovered from the WI using Warrick
[16]. However, these recoveries are unable to reproduce the
server components of the website.

We have identified three methods that could be used to
inject server components into the WI:

1. Exposing the raw components - The server compo-
nents of a website can be combined into one or more
compressed files which are then placed on the web
server and exposed to the WI.

2. Robot vaults - The server components can be encoded
into special crawlable pages which are created solely
for WI crawlers.

3. Dispersion through preexisting content - The server
components can be injected into preexisting crawlable
pages in an unobtrusive manner.

The first method is the simplest, but because search en-
gines do not prefer compressed binary content [22], it is likely
to only be captured by web archives. This leaves the com-
ponents particularly vulnerable to loss.

The second method has been explored by Traeger et al.
[29]. They demonstrated how search engine caches could be
used for backing-up a filesystem by creating special HTML
pages designed only for storage; their pages did not contain
readable information that would be useful to the public at
large. While all members of the WI are likely to crawl these
pages, search engines might consider them spam and would
therefore not store them in their caches. Additionally, if a
single page was not cached, the embedded file was lost.

We propose the final method which uses previously exist-
ing pages of a website for storing the server components and
thereby voids the risk of creating spam. Taking advantage
of the fact that HTML allows comments of any size to be
inserted within the page without affecting the appearance
of the page, this approach can hide the encoding from the
viewer of the page. Like steganography, the encodings are
hidden from view. Additionally, erasure codes can be used
to spread the encodings to multiple pages where recovery of
only a subset of the pages allows complete recovery of the
server component. This mitigates the risk incurred by the
robot vaults method of requiring a single page to be stored
by the WI in order to recover a single server component.

3. INJECTION MECHANICS

3.1 What to Protect
When considering which server components to protect,

two approaches can be used. Using a pessimistic approach,
the worst possible scenario is planned for, and as many
server components are protected as possible: scripts, database
contents, and crawlable content like images, style sheets, and
PDFs that may not be stored in a canonical format by all
members of the WI. Other resources could be included like
the script interpreter, third party libraries, database soft-
ware, and even the operating system if there is a possibility
that any of these service components are in danger of being
lost.

Using a more optimistic approach, protection is given to
as few resources as possible without losing the functional-
ity of the website. In this case only the customized scripts
and database contents are protected, and it is assumed the
WI would store any crawlable content in its canonical for-
mat, and all third-party supporting software would be read-
ily available in an emergency. The optimistic approach puts
a much lower storage burden on the WI while increasing the
risk of losing certain components.

The pessimistic approach is essentially computing the tran-
sitive closure on software dependencies necessary for long-
term preservation. The tension between the optimistic and
pessimistic approaches is one that frequently occurs in digi-
tal preservation projects, such as documenting popular for-
mats and encodings in [30] and the knowledge base and rep-
resentation information of OAIS [6].

3.2 Dispersing Encoded Components
The server components of a website can be injected into

crawlable pages by base64 encoding the components and in-
serting the encodings into HTML comments. The comments

(a) (b) (c) (d) (e) (f)
p1

p5

pm

file

Search
Engine
Cache

c1

c2

c3

. . .

cn

p1 c1

p2

p3 c5 file

. . .

pn cm

Figure 1: Injecting and recovering a server file into
and from the WI.

can be injected into any pre-existing page on the target web-
site.

An erasure code transforms a message of l blocks into a
message with n blocks (where l < n) where the original
message can be recovered from a subset of those blocks [10].
Figure 1 illustrates how erasure codes can be used to inject
a server file into crawlable content:

a) Use erasure codes to break an optionally encrypted server
file into n blocks where recovery of any r blocks allows
for complete recovery of the encrypted file.

b) Insert each block (base64 encoded) and metadata into n
HTML files.

c) Wait for search engines (or other web repositories) to
crawl and cache the HTML files.

Once a sufficient number of pages have been cached or
archived, the server file can be recovered like so:

d) Recover as many HTML files from search engine caches
as possible (m).

e) Extract available blocks and metadata from the recovered
HTML files.

f) If at least r blocks have been recovered (where r ≤ m),
reconstruct the server file (and optionally decrypt) using
the erasure codes.

3.3 Segmenting Approaches
Since dynamically generated websites normally contain a

large number of server files (sometimes much larger than
the number of indexable pages), it is best to compress the
server files together into one or more zip files. This reduces
the amount of data injected into the WI and is practically
easier to manage. When choosing how to segment the server
files into zip files, two different approaches can be taken:

1) All-or-nothing approach – Compress all server files
together into a single file and inject it into all available
pages.

2) Segmented approach – Compress groups of server files
into single files based on some sort of grouping mecha-
nism (e.g., by directory, change rate, last modified, im-
portance, etc.) and inject them into subsets of available
pages.

The first approach is the simplest to implement, but if the
minimum number of blocks are not recovered, then none of
the server components are recovered. Also, if one server
file is changed, the single compressed file must be recreated
and re-inserted into all the HTML pages. A web repository
would then need to re-crawl and re-store a large number of
pages it had already cached or archived in order to have
stored all the blocks of the same version.

Although more complicated, the second approach allows
recovery of individual groups of server components when
a minimum number of blocks are recovered. Also, if one
server file is changed, only the compressed file containing
the changed server file must be recreated and re-inserted,
thus isolating the changes to a subset of HTML files.

Figure 2 illustrates these two approaches. In the all-or-
nothing approach (left), all the server files are compressed
together into a single zip file, and the file’s blocks are then
distributed to all the available pages. With the segmented
approach (right), groups of server files are grouped together
into separate zip files which are then distributed to subsets
of pages. Larger zip files (in bytes) are allocated a larger
number of pages. For each subset, r pages would need to be
recovered (where r is specific to the subset) to reconstruct
the zipped server file.

When a website is lost, complete knowledge of where each
zipped file was injected and which zipped files are miss-
ing is ideal. For example, if none of the pages could be
found in the WI that house the first zip file, knowledge that
the file is missing (and knowledge of its contents) can help
the recoverer when restoring the website’s functionality. A
manifest listing the filenames, paths, timestamp, sizes and
details about where the components were injected can be
produced and distributed along with the zipped server com-
ponents. Inserting the manifest into every recoverable page
would ensure its recoverability at the cost of re-building and
re-injecting the manifest every time a file changed. To min-
imize these costs, the manifest could be inserted into one or
more pages that have a high likelihood of being recovered,
like the root page of the site or the pages a single hop away
from the root page.

3.4 Choosing Block Sizes
When choosing values of n and r, care must be taken to

ensure the block sizes are not too large since search engines
truncate cached resources that are beyond their respective
thresholds (Google: 977 KB, Yahoo: 214 KB, Live: 1 MB)
[20]. The block size b can be calculated using the size of the
zipped server file s like so:

b = s/r (1)

As r increases, the size of the blocks will decrease, but the
minimum number of HTML files to store r blocks increases.
Therefore, a minimum value for r should be used which takes
into account the search engine’s cache size limit t, the max-
imum block size or load z that should be added to the web-
site’s pages, the total number of HTML resources h whose
size is < t− z, and the size of the zipped server file s. The
minimum value of r for a zipped file is calculated like so:

r = ds/ze (2)

The z parameter is the only one which can be easily ma-
nipulated. Ideally a value of z should be picked that is as
small as possible so the resulting pages are not overly large,

Server files

HTML files

Zipped files

All-or-nothing approach Segmented approach

Figure 2: Approaches to injecting server components into web pages.

Table 1: Various r values (bold).
Zipped file Block size z (before base64 encoding)
size s 50 KB 100 KB 150 KB

1 KB 1 1 1
1 MB 21 11 7
100 MB 2,048 1,024 683
1 GB 20,972 10,486 6,991

causing them to download slower and creating more of a bur-
den for the repository. Consideration should also be made
for the extra space taken by base64 encoding since base64
encoding expands the block size by one third. If r > h then
there are not enough HTML pages to store the minimum
number of blocks r. In this case the acceptable block size
(z) would need to be increased, or if possible, more pages
could be added to the website (thus increasing h) or the size
of the server file (s) could be decreased by removing less
essential server components. Once r has been calculated, n
blocks can be created where n = h.

To illustrate how the size of the zipped file s and the
block size limit z affects the number of HTML pages required
to store the blocks, the value of r has been calculated for
various values of s and z in Table 1. Since the average size
of HTML files varies between 10-40 KB [3, 24] and since
Yahoo is the most restrictive repository with only 214 KB
of cache space, blocks should generally be no larger than 130
KB (solve for x where 214 KB - 40 KB = 1.33x).

3.5 Versioning
When web server components change or new ones are

added, the injected pages must be updated with newly com-
puted blocks. Additionally, metadata about each block needs
to be kept along with the blocks for version control since only
blocks that contain the same version of a server file can be
used together to reconstruct the server file.

Since search engines often crawl the same pages only once
a day or less often to be polite to the web server, blocks
can be re-computed on a daily basis, ideally at times when
server activity is low. Alternately, a web server module could
be used to inject pages on-the-fly with encoded blocks de-
pending on the identity (IP address or user agent) of the
requester. This would allow smaller pages to be served to
regular users and larger pages with the encoded blocks to be
served to search engines. This technique of serving clients
different pages based on their identity is called cloaking, and
it must be used with caution since most search engines dis-
approve of it [31].

3.6 Security Considerations
The WI is accessible to everyone; this has its benefits and

its drawbacks. If a website owner was to die and their site be-
came lost over time, the site’s users may want to recover the
site so it would remain accessible to the site’s user commu-
nity. Having the server components readily accessible from
the WI would dramatically decrease the effort involved in
making the site functional once again.

On the other hand, the site may contain sensitive data like
passwords, account IDs, credit card numbers, etc. which the
site owner may never want accessible to a third party. In
this case the server components could be encrypted with a
private key, and death of the site owner (and knowledge of
the key) would likely prevent the functionality of the site
from ever being recovered (at least until the encryption was
broken). The site owner should also consider what would
happen if the key were ever forgotten or compromised.

In a third scenario, the website owner may want to pro-
tect their server components in the immediate future but
not necessarily for all time. Use of non-parallelizable cryp-
tography, i.e. timed-release crypto [28], could be used to
keep the server components protected until a set amount of
time had passed.

4. EXPERIMENTS
To validate the feasibility of recovering a website’s server

components from the WI, two experiments were conducted
using websites that dynamically produce a majority of their
content. The experiments were limited to digital reposito-
ries which were running GNU EPrints [8], a popular open
source repository package that is composed of Perl scripts,
configuration files and MySQL database. Ten randomly se-
lected repositories running EPrints were crawled and recon-
structed to see how much content might be recovered for a
typical EPrints repository. The server components for these
repositories were not recoverable since they did not imple-
ment any injection methods. In the second experiment, a
test repository was created, the Monarch Repository, using
EPrints software. It contained 100 PDF resources and em-
bedded server encodings. The repository was reconstructed
on a weekly basis for 32 weeks.

4.1 Reconstructing 10 Digital Repositories
The first experiment examined how much of an EPrints

repository could be recovered from the WI if the repository
was to suddenly disappear. Ten randomly selected reposito-
ries running EPrints were selected from the Registry of Open
Access Repositories (ROAR) [27]. The same methodology
from previous reconstruction experiments were used to de-

termine reconstruction success[19, 16, 22]: the repositories
were crawled using the Heritrix web crawler [23] and then
reconstructed with Warrick, and the reconstructions were
compared to the crawled sites. Of course the reconstruc-
tions were only able to recover the client-side representation
of the sites and none of the server components.

A distinguishing characteristic about repositories is that
they typically curate a large number of non-HTML resources
like historical images, academic documents, and the like.
They maintain a variety of metadata about each resource for
purposes of provenance. For many repositories, PDF doc-
uments are the primary resources being curated, and much
of the metadata can be re-generated as long as the PDF
remains available. The ten repositories selected in this ex-
periment contained a variety of resource formats, but they
all contained a number of PDFs.

Table 2 lists the ten repositories in order of total resources
(HTML, images, PDFs, etc.) along with the difference vec-
tors and reconstruction diagrams (difference vectors are the
percent of resources changed, missing and added, and recon-
struction diagrams are visualizations of difference vectors as
introduced in [22] and explained at the bottom of the table).
On average, 87% of the repository’s resources were recovered
and 83% of the PDFs. Unfortunately, the PDFs recovered
were much more likely to be in HTML format rather than
their native format (68% vs. 32%) since search engines con-
vert PDFs into HTML documents when cached and IA had
few PDFs archived. This conversion may be acceptable for
PDFs that are purely textual, but loss of figures and other
images in the PDF-to-HTML conversion process are usually
problematic in the face of complete loss.

4.2 Recovering a Repo’s Server Components

4.2.1 Setup
The second experiment was a proof-of-concept, demon-

strating the erasure code injection method presented pre-
viously could be used to recover the server components of
a website. A digital repository was created using EPrints
and populated with 100 academic papers in PDF format
and metadata (the papers were from the fields of Web tech-
nologies and information retrieval). The PDFs were all pre-
viously accessible on the Web. Since the PDFs were ac-
cessible to a web crawler, it is possible that a majority of
them would duplicate PDFs already cached by the search
engines. However, Google Scholar frequently provides many
alternate locations of the same PDF and maintains multiple
cached copies. Although Warrick does not pull directly from
Google Scholar, we found the same PDFs indexed by Google
Scholar were always accessible from the Google cache used
by Warrick.

An example web page from the Monarch Repository (as
it was called) is shown in Figure 3. If the user places the
cursor over the PDF icon, a preview image of the document
appears. This PNG image can easily be found by a web
crawler. Although each page notified the reader that it was
from a “test repository,” we decided it was unlikely a search
engine would refuse to cache the page because of the pres-
ence of that phrase. The composition of the repository as
seen by a typical web crawler is shown in Table 3.

The optimistic approach was adopted to preserve the server
components: only the Eprints software (Perl scripts), con-
figuration files and database contents (extracted with the

Figure 3: Monarch Repository screen shot.

Table 3: Composition of Monarch Repository.
Type Total Distribution

HTML 123 34.0%
Images 110 30.4%
PDF 100 27.6%
Style sheet 26 7.2%
Other 3 0.8%
Total 362 100%

mysqldump tool) were preserved. There was no private or
sensitive data in the EPrints server components. The size of
the software was approximately 3.3 MB (uncompressed), 2
MB for config and other miscellaneous files and 650 KB for
the database contents. Tarring and compressing all these
files together with gzip produced a 1 MB file. The PDFs
occupied 41 MB of space and would have added 30 MB to
the compressed tar file.

The encoded server components were injected into the
HTML resources of the website. An example of an injected
block in HTML comments is shown in Figure 4.

For 19 weeks, the Monarch Repository was crawled with
Heritrix and reconstructed with Warrick (using the Compre-
hensive policy which attempts to recover a maximum of all
lost resources [19]) at the end of the week as was performed
in the previous reconstruction experiment. The crawls were
matched with the reconstructions to produce an accurate
assessment as to how much of the website was being suc-
cessfully reconstructed each week. After week 19, the site
was taken off-line to simulate “losing” the website, and only
reconstructions were performed weekly.

Several techniques were used throughout the experiment
to test the all-or-nothing and segmented approaches and
website updates. Initially, the segmented approach was used
to create ten compressed tar files, one for each directory of
the Eprints software and the database (s ranged from 122
bytes to 462 KB). The files were dispersed among the 123
HTML pages according to size (h = 123 and z = 50 KB),
so larger files were allocated more pages than smaller files
which kept the block sizes from becoming too large. The

Table 2: Ten reconstructed digital repositories.
Repository All resources PDFs Diff Recon

Total Recov Total Recov as PDF as HTML vector diag

1. eprints.libr.port.ac.uk 176 97.2% 36 94.4% 2.9% 97.1%
(0.722,
0.028,
0.018)

2. archiviomarini.sp.unipi.it 222 86.0% 47 46.8% 13.6% 86.4%
(0.658,
0.131,
0.000)

3. eprints.erpanet.org 272 82.0% 66 60.6% 75.0% 25.0%
(0.467,
0.062,
0.229)

4. open.ekduniya.net 452 95.4% 87 81.6% 4.2% 95.8%
(0.699,
0.046,
0.005)

5. brief.weburb.dk 458 88.4% 143 82.5% 72.0% 28.0%
(0.286,
0.109,
0.022)

6. eprints.bbk.ac.uk 771 93.4% 331 91.8% 1.3% 98.7%
(0.720,
0.065,
0.004)

7. eprints.vu.edu.au 1192 98.1% 314 96.5% 84.2% 15.8%
(0.316,
0.017,
0.004)

8. eprints.lse.ac.uk 1336 95.0% 513 89.5% 2.8% 97.2%
(0.821,
0.046,
0.003)

9. www.cbmh.ca 1695 99.6% 673 99.6% 12.2% 87.8%
(0.602,
0.004,
0.003)

10. bnarchives.yorku.ca 2130 30.3% 272 84.6% 47.4% 52.6%
(0.173,
0.690,
0.012)

Average 870.4 86.5% 248.2 82.8% 31.6% 68.4%
(0.546,
0.120,
0.030)

Difference vector (changed, missing, added)

Figure 4: Encoding of a server file in HTML com-
ments from the Monarch Repository.

Table 4: Updates and changes made throughout the
experiment.

Week Summary

1 Ten segments are distributed throughout the website.
10 Single link is added to unlinked web page.
13 Subset of blocks are reallocated to eight web pages.
16 All server components are reallocated to all web pages.
19 Website is taken off-line.

manifest was encoded and placed in the root page of the
repository. The resulting pages averaged approximately 60
MB in size, far below Yahoo’s 214 KB size limit. On May 19,
2007, links pointing to the repository were placed on three
previously indexed pages on the www.cs.odu.edu website in
order to advertise the existence of the website to the WI.

After nine weeks, a single link was added to the root
page which pointed to a single web page which had acci-
dentally been unlinked. This unlinked page contained one
of the encoded blocks which was needed to recover one of the
ten server files. Three weeks later, several of the encoded
blocks were re-arranged and re-allocated to eight web pages
to simulate an update to the website. And three weeks later,
the all-or-nothing approach was tested by creating a single
gzipped tar file for all the repository server components and
distributing it among the entire website. A “This page was
modified on date and time” notice was also added to each
page in this last phase to encourage the search engines to
re-cache all the pages.

Finally, the repository was taken off-line on week 19 to
simulate the loss of the website. The website was configured
to return an HTTP 404 (not found) response to every URL
request except for the root page which contained a notice
that the website had been taken off-line. These steps are
summarized in Table 4.

4.2.2 Results
Figure 5 shows how much of the Monarch Repository was

recovered each week. The 362 resources are ordered on the

other

images

pdf

html

0

100

200

300

0 10 20 30 40

Weeks

U
R

Ls

Figure 5: Recovered Monarch resources each week.
Each dot represents the successful recovery of the
resource on the given week.

●

●●●●●●
●

●●●
●●●●●●●●

●

●

●●●

●

●●●●●●●●●●

●
●

●

●

●

●

●
●●0

20

40

60

80

100

0 10 20 30 40

●

html
pdf
images
other

Weekly reconstructions

R
ec

ov
er

ed
 (

pe
rc

en
t)

Figure 6: Percent of recovered Monarch resources
each week.

y-axis by resource type. A square dot indicates that the re-
source was recovered that week. The percentage of resources
recovered each week is plotted in Figure 6. Just a few days
after a link was created to the Monarch Repository, Google
discovered and crawled the website, making a quarter of
the discovered pages available from their cache. Each week
the percentage of resources recovered from Google increased.
Live and Yahoo had crawled a number of resources from the
repository a few weeks after Google, but neither search en-
gine made anything available from their cache until later in
the experiment as will be discussed shortly. Several style
sheets (categorized as “other”) were recovered from IA be-
ginning on week 17, only two months after they first crawled
the website.

On week 7 and 8, 100% of the HTML resources were recov-
ered (minus one unlinked page), all from Google. However,
on week 9 several HTML resources which were once accessi-
ble from Google’s cache were no longer cached, and a 100%
recovery rate for HTML resources was not observed again.
As illustrated by Figure 5, a small number of URLs tended
to fluctuate in and out of Google’s cache throughout the ex-
periment. For example, the URL http://blanche-03.cs.

odu.edu/118/ was cached on weeks 1, 2, 4–9, 13–17.
Although Google crawled a large number of images on

week 7, only a handful of images were recovered from Google
by week 15; interestingly, one of them appeared to be a blank
image (Figure 7). Live had cached 18 images by week 15,
but Warrick was not able to recover them due to a bug in
the Live API [15]. Unlike the high percentage of recovered
PDFs from the first experiment (Table 2), Figure 6 shows
only a small percentage of the Monarch’s PDFs were made
available from Google’s cache; none were accessible from
Live and Yahoo.

The server components were far more recoverable than
the resources making up the client view. Table 5 lists the
percentage of recovered HTML pages and server files each
week and the contribution rate of each repository through-
out the experiment. Some of the weeks indicate an update to
the website was performed prior to that week’s reconstruc-
tion. Almost 100% of the server components were recover-
able from the WI just two weeks after the experiment began,
despite having only recovered 60% of the HTML pages. It
was not until week 10, when a link was posted to an un-

Table 5: Recovered server files and repository con-
tributions each week.

Week Recov Recov Contributors (%)

HTML
(%)

server
files
(%)

Google Live Yahoo IA

1 23.6 59.4 100 0 0 0
2 60.2 99.6 100 0 0 0
3 65.0 94.6 98.9 1.1 0 0
4 80.5 99.7 100 0 0 0
5 85.4 99.7 99.2 0.8 0 0
6 95.9 99.7 99.2 0.8 0 0
7 100 99.7 97.1 2.9 0 0
8 100 99.7 98.5 1.5 0 0
9 98.4 99.7 98.5 1.5 0 0
101 92.7 100 100 0 0 0
11 92.7 100 88.4 11.6 0 0
12 91.1 100 89.5 10.5 0 0
132 98.4 92.1 85.2 14.8 0 0
14 82.1 92.1 69.6 17.4 13.0 0
15 98.4 100 81.6 14.2 4.2 0
163 97.6 0 80.6 11.5 7.9 0
17 98.4 100 68.7 8.2 12.3 10.8
18 91.1 100 66.3 6.9 16.3 10.4
194 91.1 100 47.1 5.8 36.1 11.0
20 83.7 100 2.5 66.2 21.2 10.3
21 83.7 100 9.9 52.7 21.4 16.0
22 96.7 100 3.7 79.4 7.3 9.6
23 94.3 100 3.8 83.5 2.8 9.9
24 96.7 100 4.1 82.9 3.2 9.7
25 17.1 0 44.4 0 6.7 48.9
26 94.3 100 1.0 97.9 1.0 0
27 95.1 100 2.8 86.6 0.9 9.7
28 89.4 100 0 89.3 0.5 10.2
29 84.6 100 1.5 87.4 0.5 10.6
30 81.3 100 0 100 0 0
31 46.3 100 1.5 98.5 0 0
32 48.0 100 0.8 99.2 0 0
33 44.7 100 1.6 98.4 0 0
34 38.2 100 0 99.2 0 0.8
35 38.2 100 0 99.2 0 0.8
36 22.8 100 1.0 92.0 0 7.1
37 22.0 0 0 91.6 0 8.4
38 20.3 0 0 90.5 0 9.5
39 17.1 0 1.4 68.1 0 30.6
40 14.6 0 1.6 62.9 0 35.5
41 29.3 100 1.5 66.7 0 31.8
42 15.4 0 2.3 46.5 0 51.2
43 3.3 0 4.0 0 0 96.0
44 3.3 0 4.0 0 0 96.0

1Single link is added to unlinked web page.
2Subset of blocks are reallocated to eight web pages.
3All server components are reallocated to all web pages.
4Website is taken off-line.

Figure 7: Images from Monarch Repository cached
by Google.

linked web page, that all 100% of the server files could be
recovered.

When several encoded blocks were reallocated to eight
web pages at the beginning of week 13, the percent of re-
coverable server files dropped accordingly. The web server
logs indicated that Google, Live and Yahoo continued to
crawl the affected pages after the changes were made, but
the cached pages were not being updated. Since the vast
majority of pages were dynamically generated and did not
return a Last-Modified HTTP header, the search engines
may have performed some type of processing on the crawled
pages which ignored changes to HTML comments only. It
took nearly three weeks before three of the eight pages were
recoverable which allowed all 100% of the server files to be
recovered once again.

By the end of week 16, none of the server components
were recoverable. This was due to the complete realloca-
tion of all the server components at the beginning of the
week which required the altered pages to be re-crawled and
cached. Since the WI seemed to mostly ignore changes to
only HTML comments in the previous weeks, a single line of
text was added to each page stating“This page was modified
on date and time.” This modest change seemed to encourage
the WI to re-cache the altered pages because the following
week 100% of the server files were once again recovered.

When the repository was taken off-line at the beginning of
week 19, 100% of the server components were recoverable at
the end of the week and continued to be recoverable through
week 36 due, mainly because of Live’s contribution. Google
and Yahoo contributed far fewer resources after week 19
because most of the missing repository content was purged
from their caches. Live slowly purged their caches, finally
emptying them by week 43. IA contributed mainly CSS files
each week (with a notable gap between weeks 30–33).

5. DISCUSSION AND FUTURE WORK
The injection technique using erasure codes seems to have

been very effective for the proof-of-concept. Even though the
Monarch Repository had never been crawled before, nearly

all of its server components were recoverable within two
weeks of it going live. This means the Monarch Reposi-
tory would have lost none of its dynamically-produced web
pages had it been lost whereas the repositories from Table
2 would have lost an average of 13% of their pages. Sev-
enteen weeks after the repository was “lost,” all the server
components remained recoverable.

As mentioned earlier, injecting server components into the
WI has some disadvantages. First, it puts an additional
load, however small, onto the web repositories that they may
not want to take-on. If the injection technique were adopted
widely, web repositories may take steps to remove suspicious
comments from crawled pages. Second, the additional pay-
load to each page makes them download slower. This is
certainly an issue where bandwidth is limited (e.g., devel-
oping countries and mobile clients). Third, some alteration
of the visible contents of injected pages may be required to
induce the WI to refresh its holdings. Forth, setting up such
an injection mechanism requires a small amount of work by
the webmaster before the website is lost; this is opposed to
the lazy preservation approach of “no work required.” And
finally, it may not be wise to place private data into publicly
accessible locations like the WI, even if encryption is used.

Despite these limitations, there is a need for a safety net
like lazy preservation for preserving the server components
of a lost website so re-enabling its functionality and accessing
its deep web resources is possible. Perhaps a business model
could be developed that provided an insurance policy for lost
websites. An organization like Google with large amounts of
disk space (and large amounts of public trust) could auto-
matically back-up any number of web servers without cost
to the webmasters. In the advent of a loss, the organiza-
tion could recover the lost web server components for a fee.
Considering the cost of re-building a dynamic website from
scratch, a webmaster may be willing to pay a large amount
of money to recover a lost website, enough to cover the col-
lective cost of storing so much data. For such a mechanism
to work, it would need to be easily enabled by the “laziest”
of webmasters.

This was a proof-of-concept study– there remain many
areas of investigation before this approach can be widely
deployed. First, different methods of injecting the encoded
pieces into the HTML pages need to be compared. We sim-
ply wrote a script that modified the static HTML pages,
but various run-time inclusion methods (e.g., Apache Mod-
ules, server side includes, URL rewriting) should be eval-
uated. Second, the relationship between frequent updates
to both the server-side components and the client-side re-
sources needs to be further explored. In our experiment,
changes to both server- and client-side resources were in-
frequent and highly synchronized. Third, we have implic-
itly assumed that the WI has not removed or corrupted
the HTML comments. Our techniques would fail if the WI
adopted an adversarial position. Finally, although the WI
migrates client-side resources to new formats, it would not
do so for server-side components. Something between the
pessimistic and optimistic approaches needs to be developed
that can express software dependencies and migration paths
in a light-weight manner.

6. CONCLUSIONS
Several techniques for recovering the server components

of a website from the WI were examined in this paper. One

promising technique was implemented in an EPrints repos-
itory, and it was demonstrated that nearly all the reposi-
tory’s server components could be recovered from the WI
just two weeks after the repository was made accessible on
the surface web. Pages were refreshed in the WI a few weeks
after they were modified, allowing the modified server com-
ponents to be completely recoverable. This injection tech-
nique may not be ideal for every type of website, but it
does demonstrate that the lazy preservation approach to pre-
serving server components is at least feasible with a small
amount of work on behalf of the webmaster.

7. ACKNOWLEDGMENTS
This work is supported in part by NSF Grant IIS-0610841.

8. REFERENCES
[1] S. Abiteboul, G. Cobena, J. Masanes, and G. Sedrati.

A first experience in archiving the French Web. In
Proceedings of the 6th European Conference on
Research and Advanced Technology for Digital
Libraries, pages 1–15, Sept. 2002.

[2] A. Arvidson, K. Persson, and J. Mannerheim. The
Kulturarw3 Project - The Royal Swedish Web
Archiw3e - An example of “complete” collection of web
pages. In Proceedings of the 66th IFLA Council and
General Conference, Aug. 2000. http:
//www.ifla.org/IV/ifla66/papers/154-157e.htm.

[3] R. Baeza-Yates, C. Castillo, and E. N. Efthimiadis.
Characterization of national web domains. ACM
Transactions on Internet Technology, 7(2):9, 2007.

[4] M. K. Bergman. The deep web: Surfacing hidden
value. The Journal of Electronic Publishing, Aug.
2001. http:
//www.press.umich.edu/jep/07-01/bergman.html.

[5] A. Cantrell. Data backup no big deal to many, until...
CNNMoney.com, 2006. http://money.cnn.com/2006/
06/07/technology/data_loss/index.htm.

[6] Consultative Committee for Space Data Systems.
Reference model for an open archival information
system (OAIS). Technical Report CCSDS 650.0-B-1,
2002.

[7] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche:
Making backup cheap and easy. SIGOPS Operating
Systems Review, 36(SI):285–298, 2002.

[8] Eprints for digital repositories.
http://www.eprints.org/.

[9] C. Hank, S. Choemprayong, and L. Sheble. Blogger
perceptions on digital preservation. In Proceedings of
JCDL ’07, page 477, 2007.

[10] E. D. Karnin, J. W. Greene, and M. E. Hellman. On
secret sharing systems. IEEE Transactions on
Information Theory, 29(1):35–41, 1983.

[11] S. Katzenbeisser and F. A. Petitcolas, editors.
Information Hiding Techniques for Steganography and
Digital Watermarking. Artech House, Inc., Norwood,
MA, USA, 2000.

[12] M. Koster. A standard for robot exclusion, June 1994.
http://www.robotstxt.org/wc/norobots.html.

[13] C. Marshall, F. McCown, and M. L. Nelson.
Evaluating personal archiving strategies for
Internet-based information. In Proceedings of IS&T

Archiving 2007, pages 151–156, May 2007.
arXiv:0704.3647v1.

[14] J. Masanès. Web archiving methods and approaches:
A comparative study. Library Trends, 54(1):72–90,
2005.

[15] F. McCown. Windows Live Search development
forum: Image search with ‘site:’ operator, June 2007.
http://forums.microsoft.com/MSDN/ShowPost.

aspx?PostID=1799762&SiteID=1.

[16] F. McCown, N. Diawara, and M. L. Nelson. Factors
affecting website reconstruction from the web
infrastructure. In Proceedings of JCDL ’07, pages
39–48, June 2007.

[17] F. McCown, X. Liu, M. L. Nelson, and M. Zubair.
Search engine coverage of the OAI-PMH corpus. IEEE
Internet Computing, 10(2):66–73, Mar/Apr 2006.

[18] F. McCown, C. C. Marshall, and M. L. Nelson. Why
websites are lost (and how they’re sometimes found).
Communications of the ACM, 2008. To appear.

[19] F. McCown and M. L. Nelson. Evaluation of crawling
policies for a web-repository crawler. In Proceedings of
HYPERTEXT ’06, pages 145–156, 2006.

[20] F. McCown and M. L. Nelson. Characterization of
search engine caches. In Proceedings of IS&T
Archiving 2007, pages 48–52, May 2007.
arXiv:cs/0703083v2.

[21] F. McCown and M. L. Nelson. Usage analysis of a
public website reconstruction tool. In Proceedings of
JCDL ’08, June 2008.

[22] F. McCown, J. A. Smith, M. L. Nelson, and J. Bollen.
Lazy preservation: Reconstructing websites by
crawling the crawlers. In Proceedings of WIDM ’06,
pages 67–74, 2006.

[23] G. Mohr, M. Kimpton, M. Stack, and I. Ranitovic. An
introduction to Heritrix, an archival quality web
crawler. In Proceedings of IWAW ’04, Sept. 2004.

[24] E. T. O’Neill, B. F. Lavoie, and R. Bennett. Trends in
the evolution of the public web. D-Lib Magazine, 3(4),
Apr. 2003.

[25] J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software:
Practice and Experience, 27(9):995–1012, 1997.

[26] M. O. Rabin. Efficient dispersal of information for
security, load balancing, and fault tolerance. Journal
of the ACM, 36(2):335–348, 1989.

[27] Registry of Open Access Repositories (ROAR).
http://roar.eprints.org/.

[28] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock
puzzles and timed-release crypto. Technical Report
TR-684, Cambridge, MA, USA, 1996.

[29] A. Traeger, N. Joukov, J. Sipek, and E. Zadok. Using
free web storage for data backup. In Proceedings of
StorageSS ’06, pages 73–78, 2006.

[30] A. Waugh. The design of the VERS encapsulated
object experience with an archival information
package. International Journal on Digital Libraries,
6(2):184–191, Apr. 2006.

[31] B. Wu and B. Davison. Cloaking and redirection: A
preliminary study. In Proceedings of AIRWeb ’05, May
2005.

