
Teaching Web Information Retrieval to Undergraduates

Frank McCown
Harding University

Computer Science Dept
Searcy, Arkansas, USA 72149
fmccown@harding.edu

ABSTRACT
Topics in the field of Web Information Retrieval (IR) and
web search are slowly being introduced at the undergraduate
level. In this paper, we show how the curriculum for a new
undergraduate course on web search engines was developed,
and we share our experiences in having students develop
their own search engine components from scratch or modify
and extend a popular open source search engine. We hope
our experiences will be helpful to other Computer Science
departments that are looking to develop an undergraduate
Web IR course.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:
Curriculum

General Terms
Algorithms, Experimentation

Keywords
open source, search engines, teaching, Web IR

1. INTRODUCTION
The utility and ubiquity of web search is making Web

Information Retrieval (IR) an increasingly popular research
topic. The incredible success of Google is a striking example
of how important it is for academia and industry to foster
innovation in the field of Web IR. Other tech companies
like Yahoo and Microsoft continue to make significant in-
vestments in web search, and Tim Berners-Lee et al. have
begun promoting the study of Web Science [2] in which Web
IR is a strong component.

While Web IR is often taught at the graduate level, it is
increasingly being introduced at the undergraduate level as
an elective (see [10] for a complete discussion of IR curricu-
lum issues in CS). Web IR is often an appealing subject to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-885-8/10/03 ...$10.00.

computer science (CS) students who use search engines like
Google and Bing on a daily basis and are curious as to how
they function. Using data structures learned in CS 2, an un-
dergraduate student can build a complete web search engine
in a semester’s time. This can provide extra motivation for
students when they are able to apply theoretical concepts to
a practical application.

At Harding University, we began preparing in the fall of
2007 to offer an elective undergraduate course called Search
Engine Development. We wanted to develop a course for
undergraduate students in CS with a minimal amount of
prerequisites so as to maximize the course’s potential audi-
ence. We made CS 1/2 and our core Internet Development
1 course the only prerequisites. This allowed sophomores,
juniors, and seniors to enroll.

When developing the content for this course, we looked
for similar offerings at other universities to determine what
subjects should be included and what types of programming
assignments should be given. From our survey, we created a
curriculum which covered a majority of the topics taught at
the undergraduate and graduate levels at many universities,
and we experimented with two different approaches to the
class programming projects. In 2008, we required students
to build a complete search engine from scratch (as suggested
in [6] and [8]). In 2009, we required students to modify and
extend the open source search engine Nutch [21].

In this paper, we present the curriculum for an undergrad-
uate course focusing on web search which we developed from
our survey of thirteen graduate and undergraduate Web IR
courses. We discuss text books and reading material for the
course, and we share our projects and our experiences hav-
ing students build a search engine from the ground-up and
modifying a complex open source search engine.

2. CURRICULUM
Although the instructor who would be teaching the search

engine course had performed extensive research in using
search engines for preserving the Web (see, e.g., [19]), he
had never taken a Web IR course and had only studied IR
independently. Having no base materials from which to de-
velop a Web IR course, it was decided that a curriculum
survey should be performed of existing course offerings in
Web IR.

The courses listed in Table 1 (sorted by course title) were
found using word-of-mouth, Google, and referring links from
class web pages. This list is not meant to be an exhaustive
list of all Web IR courses, but it is representative of the
types of courses that focus mainly on Web IR issues. Sev-

Table 1: A selection of Web IR courses offered to graduates and undergraduates.
Title Instructor University Audience
Information Retrieval Susan Gauch University of Arkansas Grad
Information Retrieval and Search Engines C. Lee Giles Penn State Undergrad
Information Retrieval and Web Search Raymond J. Mooney University of Texas at Austin Undergrad
Information Retrieval and Web Search Rada Mihalcea University of North Texas Grad
Search Algorithms Christian Schindelhauer Univ of Paderborn (Germany) Unknown
Search Engine Technologies Nigel Ward Univ of Texas at El Paso Both
Search Engine Technology Dragomir R. Radev Columbia University Grad
Search Engines Bruce Croft Univ of Massachusetts Amherst Undergrad
Search Engines: Tech., Society, & Business Marti Hearst Univ of California, Berkley Both
Web Information Retrieval Xiannong Meng Bucknell University Undergrad
Web Search and Mining C. Manning and P. Raghavan Stanford University Grad
Web Search Engines Ernest Davis New York University Grad
WWW Search Engines Brian D. Davison Lehigh University Both

eral courses that came up during the search only focused
on IR with little Web application or were non-technical in
nature; these were excluded from the list. We noted if the
course’s audience was primarily graduate, undergraduate, or
both. This helped us pick topics more readily accessible to
undergraduate students.

Many of the courses listed in Table 1 contained extensive
websites with syllabi and project guidelines which greatly
helped us in preparing our curriculum. In a few cases, we
contacted the instructors of the course to inquire more about
the course’s content.

We pulled together a core curriculum for our search engine
course based on the curriculum surveyed and based on the
instructor’s research interests. The course had several high-
level learning objectives:

1. Students should have a basic understanding of how the
Web is organized and its fundamental properties.

2. Students should understand how search engines collect
Web content, index it, and present the most relevant
results for a given query. They should also understand
the technical, legal, financial, and social obstacles that
make web search a very difficult problem.

3. Students should understand how to design and con-
struct software that implements several significant Web
IR concepts.

4. Students should be aware of new research directions
in the field of Web IR and the new features being de-
veloped by today’s commercial search engines.

To meet these learning objectives, the course covered (in
order) the following topics:

• Web IR background

1. Web IR vs. traditional IR
2. Web search history

• Web Characterization

1. Structure of the Web (Bow-tie, scale-free and small
world networks, power-law distributions)

2. Deep web and surface web
3. Linkrot and web archiving

• Search engine characteristics

1. Metasearch, vertical, and universal search engines
2. Organic results, paid inclusion and placement
3. Types of web search queries
4. Commercial search engine query characteristics

5. Evaluating search engine effectiveness (relevancy, pre-
cision, and recall)

• Web crawling

1. Crawler architecture
2. Politeness policies (robots.txt)
3. Selection policies (URL characteristics, spider traps,

repository freshness)
4. URL normalization
5. Sitemap protocol

• Indexing

1. Boolean retrieval model
2. Vector space model
3. Inverted index and implementation issues
4. Stemming and stop lists
5. Synonyms, homographs, and misspellings
6. Term frequency and inverted document frequency

• Ranking

1. Link analysis algorithms (HITS and PageRank)
2. Rank fusion algorithms (Borda and Condorcet count)
3. Eye tracking studies

• Other

1. Web spam and adversarial IR
2. Search engine optimization (SEO)
3. Detecting near-duplicate pages
4. Personalized search

There were a number of other topics that we would like
to introduce into our course, time permitting, in later offer-
ings. These include: text mining (document classification,
clustering, etc.), search interfaces, Semantic Web, latent se-
mantic indexing, collaborative filtering, query log analysis,
distributed computing issues (Google File System, Hadoop),
web agents, and machine learning.

One of our CS department alumni who is now a developer
for a major search engine company looked over our curricu-
lum and had few suggestions for improving it. This curricu-
lum is representative of other Web IR courses described in
the literature [6, 20].

3. TEXTBOOKS
Many of the courses listed in Table 1 required one or more

of the following text books (ranked by popularity):

1. Introduction to Information Retrieval by Manning, Ragha-
van, and Schütze (2008) [17]

2. Modern Information Retrieval by Baeza-Yates and Ribeiro-
Neto (1999) [1]

3. Mining the Web: Discovering Knowledge from Hyper-
text Data by Chakrabarti (2003) [7]

An early edition of the text by Manning et al. [17] was
made freely available on the Web, and that could account for
some of its popularity. A number of other texts were also
listed as recommended texts but not primary texts (e.g.,
[14, 12, 24]). Most instructors supplemented class readings
or used exclusively the research papers that originated many
Web IR topics (e.g., shingling [5], PageRank [22], HITS [15],
and the bow-tie structure of the Web [4]). As Mizzaro [20]
points out, these papers are usually easy for students to read
and understand.

We were surprised that none of these courses used the text
An Introduction to Search Engines and Web Navigation by
Levene (2005) [16]. This text provides a good overview of
many topics mentioned in the curriculum list, contains com-
plete references to the many research papers cited in each
chapter, and uses language appropriate to an undergradu-
ate audience. Levene’s book is currently out of print which
could account for its lack of adoption.

We used Levene’s book as our primary text (students had
no problems finding used copies online). The instructor
would occasionally require other readings that were found
online about a given topic (Wikipedia provided a good start-
ing point for many topics). We pointed students to many
of the classic research papers mentioned previously but did
not make them required reading.

A book just released in 2009 by Croft, Metzler, and Strohman
entitled Search Engines: Information Retrieval in Practice
[9] was written specifically to an undergraduate CS audi-
ence. It presents pseudocode for implementing a number of
Web IR concepts and contains a number of exercises at the
end of each chapter that use Galago [11], an open source
search engine written by the book authors in Java. We may
use this text in a future offering of our Web IR course.

4. HOMEWORK AND EXAMS
A number of homework assignments were given through-

out the semester that would reinforce understanding of the
day’s subject material. Many of these exercises were as-
signed in the sampled courses or appeared in various forms in
the books discussed in the previous section. Two exams and
a final comprehensive exam assessed the students’ under-
standing of the material; they used many questions similar
in nature to the homework assignments. A brief summary
of several homework assignments follows:

1. Experiment with a commercial search engine, use var-
ious boolean queries and special operators, and com-
pare the differences in how items are ranked.

2. Calculate the precision and recall for several queries.
Calculate the P@10 for queries on Google, Live Search,
and Yahoo.

3. Create a term-document incidence matrix and inverted
index for the given document corpus, and determine
which documents are returned by the given boolean
queries.

4. Calculate the TF-IDF scores for the documents re-
turned by Google for the given queries.

5. Calculate the PageRank and hub and authority scores
for the given Web graph after one iteration.

6. Calculate the cosine similarity between the two given
documents and the Jaccard coefficient using shingles
of length n.

5. CLASS PROJECTS
The programming projects used by the sampled courses in

Table 1 vary greatly. Some courses require the students to
build a fully-functional search engine as suggested in [6, 8],
and other courses use independent projects that implement
a particular concept. Sometimes the students are to write
all their code from the ground-up, sometimes instructors
provide some code that must be modified or enhanced, and
other instructors encourage students to find freely available
code on the Web to implement their projects. Most instruc-
tors assigned projects to be completed in small groups using
popular programming languages like Perl and Java.

For our search engine course, we devised a number of small
individual projects and some larger ones to be completed
individually or in teams of two. Although we teach our CS
1/2 courses in C++, we required the projects to be coded
in Java, thus giving students exposure to a new language.
Some in-class time was allocated to teach Java and servlet
basics, but the students were mainly left to learn the nuances
of the language on their own.

5.1 Using Search Engine APIs
We initially required our students to create a search en-

gine using the freely available web search APIs by Yahoo.
(Google and Microsoft have similar APIs [18].) The Yahoo
BOSS API [27] is REST-based and allows simple HTTP re-
quests to be made which return back an XML-formatted
set of search results. This relatively small assignment gave
students experience in using Java servlets to create a fully
functional search engine.

Our students later modified their search engine to create
a “universal” search engine, incorporating news and image
results along with regular web page results. This assignment
made our students more aware of current efforts to enhance
the search experience.

5.2 Search Engine from the Ground-up
The first time we offered our search engine course, we

required our students to write nearly all of the code to im-
plement a crawler, indexer, and retriever with a web in-
terface. Each of these large project built on the previous
project which required the students to re-use code for each
new project. The only code given to them by the instructor
was a simple web crawler which had to be greatly enhanced.
A brief description of each project follows:

1. Crawler – Enhance the given crawler to obey robots.txt,
limit crawls to a given depth, normalize URLs, and
store pages in a local repository. The crawler should
replace previously crawled content that resides at the
same normalized URL.

2. Indexer – Create a program which will create an in-
verted index on the crawled corpus using TF/IDF and
a weighing criteria based on URL, title, and metatags.
It uses smart parsing of HTML, stemming, and re-
moval of stop words.

3. Retriever – Create a program that can return the
first 10 results for a Boolean query executed on the
inverted index. Create a web interface for the retriever

which shows a Google-style results page. Extra credit
is available for implementing phrase search.

Each project was similar in difficulty and consisted of sev-
eral hundred lines of code. When the final project was com-
pleted, our students had a fully functional search engine
which could crawl, index, and search a sizeable web cor-
pus. While all the students were successful in completing
at least a somewhat functional search engine, some of the
implementation details regarding efficiency became very pro-
nounced as some search engines could retrieve a document
significantly faster than other students’ implementations.

5.3 Modify an Open Source Search Engine
The second time we offered our search engine course, we

decided to approach the search engine projects from the op-
posite direction. Rather than have the students create a
search engine from scratch, we had them take an already
existing open source search engine and make some enhance-
ments. We envisioned several goals for our students:

1. Gain experience working on“real” software that is cur-
rently being used by many individuals and companies.

2. Observe how many professional software developers
write code and how well/poorly they document their
code.

3. Gain experience learning to understand what someone
else’s code is doing.

4. Learn about open source development, including bug
tracking, making enhancement requests, version con-
trol systems, and code submission.

5. Make a significant contribution to an open source project.

Several of the surveyed courses used open source software,
but we were unaware of any course that required their stu-
dents to make a significant contribution to the software. In
a personal correspondence with Bruce Croft, his students
have made some contributions to Galago in the past.

We examined a number of open source search engines and
finally settled on Nutch, an Apache project built on top of
Lucene, a popular IR system. Nutch has a very active de-
veloper base and is used by a number of organizations. It is
written in Java which, as explained earlier, allowed our stu-
dents to be exposed to a new language with which they were
not yet comfortable. Nutch includes a configurable crawler
which can handle multiple content types and an indexer and
retriever (which uses Lucene). Nutch uses Java servlets to
present a web interface that can return results formatted in
an aesthetically pleasing format. Nutch also uses Hadoop
[3] and can therefore run efficiently on a distributed system.

Our students were first required to give a presentation on
how to become a Nutch developer. This was a team assign-
ment which required a lot of independent research. Some
required components of the presentation included detailed
steps on how to submit a bug fix or new extension to Nutch
(including how JIRA works), how the various main classes
of Nutch work together, and how to run JUnit tests for the
classes in Eclipse (a popular Java IDE). The students were
also to join the user and developer mailing lists and start
monitoring the messages distributed daily.

After coming up-to-speed on Nutch, a few small projects
and one major project were assigned:

1. Crawler – Learn how to run Nutch in Eclipse, and
modify Nutch so it will output to a file all the URLs
it successfully crawled.

2. NutchBean – Learn how NutchBean (the class re-
sponsible for querying the crawled corpus) works. Add
some command-line parameters so NutchBean can search
a user-supplied crawl collection.

3. Site Query – Modify Nutch’s “site:” query operator
to return all results from the given website even if no
query term is provided.

4. Sitemap Support – Satisfy the outstanding Nutch
enhancement request to support the Sitemap Protocol
[26], a URL-discovery protocol supported by all the
major search engines.

The first three projects required a great amount of code
inspection, but only 10-20 lines of code were needed to com-
plete the project requirements. The final project, adding
Sitemap support to Nutch, required several hundred lines
of code including vigorous JUnit tests to ensure the code
was working properly. The final project was released open
source as the Java Sitemap Parser [13] on Sourceforge.net,
but time did not permit integration with Nutch.

6. DISCUSSION
Both the 2008 and 2009 search engine course offerings cov-

ered the same core curriculum given in Section 2, but they
both used very different programming projects as outlined
in Sections 5.2 and 5.3. The exams given in both offerings
covered the same topics and were void of any programming-
related problems. The exam averages were nearly the same
for both offerings (83% in 2008, 82% in 2009), so choice of
projects did not seem to have any impact in learning the
overall concepts. The class sizes were too small, however
(eight in 2008, three in 2009), to show statistically signifi-
cant findings.

The instructor asked the students’ opinions of the assign-
ments given in both offerings, and several “grass is greener”
remarks were made by students in both classes. The stu-
dents that built the search engine from the ground-up felt
they really knew the inner details of how a search engine
worked, but all the code they wrote would likely never be
used again outside of class. The Nutch students appreciated
working on a real-world project, but they were not as aware
of the implementation particulars of building a crawler, in-
dexer, or retriever.

The Nutch students often expressed being overwhelmed
by the complexity of the Nutch project. The instructor hu-
morously referred to this as the “Nutch burn” since Nutch
was relatively new to him as well. There was a large learn-
ing curve to getting Nutch properly configured and running,
much less understanding its underlying code base which of-
ten contained poor documentation. One entire class period
(75 minutes) was spent entirely on showing the students how
to run Nutch in Eclipse and resulted in the instructor cre-
ating a lengthy wiki article on the topic [25]. The students’
lack of Java proficiency also was problematic; much of the
code used advanced programming concepts which even sea-
soned programmers might be slow to understand completely.

Overall, the Nutch-based course accomplished all the goals
listed in Section 5.3, but it fell short in instilling an inter-
est in Nutch that extended beyond the classroom. In [23],
students showed a desire to continue working with the open
source projects they had used in class assignments after the
course had ended. None of our students expressed any desire
to ever use or contribute to Nutch again. Most of our stu-

dents still felt overwhelmed with Nutch’s complexity, even
after completing the projects.

Several lessons were learned from teaching this course
twice:
1. Too much class time was spent teaching Java instead of

Web IR topics. Students would have been able to com-
plete the assigned projects more successfully and with less
effort if they had entered the course with more Java pro-
gramming experience. Therefore, future offerings of this
course will require students to complete the department’s
OOP course that introduces Java.

2. The projects using Yahoo’s BOSS API were excellent
starting points and provided a gentle introduction into
programming Java servlets. Students were able to build
useful search engines with little effort and could play with
how the search results were presented.

3. From a learning perspective, neither of the project ap-
proaches (search engine from scratch or modifying an
open source search engine) is clearly better than the other.
While the Nutch group learned more about open source
software development, the other group had a better un-
derstanding of the programming details involved in build-
ing a search engine from the ground-up. Students from
both groups learned the course subject material equally
as well and satisfied the course’s learning objectives.

4. From a teaching perspective, the instructor found it sig-
nificantly more difficult to create class projects based on
open source software. Most of this difficulty can be at-
tributed to the very steep learning curve of the open
source project which required the instructor to invest a
significant amount of time becoming familiar with the
code base. Students needed some hand-holding to gain
a similar understanding of the code. Now that the in-
structor is more familiar with Nutch, it would be easier
to reuse it in a future offering of the course. However,
time must be exerted to keep up with changes in the con-
tinuously shifting code base.

We believe that in an ideal course students would create
their own search engine and later use and modify an open
source engine. From our experience, this is probably more
than an undergraduate could accomplish in one semester’s
time. However, if a less demanding open source project were
used (e.g., Galago), maybe a small project could be com-
pleted at the end of the semester.

7. CONCLUSIONS
We have described the process by which we developed a

curriculum for an undergraduate course on Web IR. The
course has used ground-up projects to build a search engine
from scratch and projects that involve modifying an open
source search engine, and we have shared some of the bene-
fits and problems with both of these approaches.

We are planning to offer the search engine course again in
the spring of 2011. We will likely use another open source
search engine like Galago in this offering. We anticipate this
course will continue to grow in popularity as opportunities
in the field of web search continue to expand.

8. REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. Addison Wesley, 1st edition, May 1999.

[2] T. Berners-Lee, W. Hall, J. Hendler, N. Shadbolt, and D. J.
Weitzner. Creating a science of the web. Science,
313(5788):769–771, August 2006.

[3] D. Borthakur. The hadoop distributed file system:
Architecture and design. 2007.
http://projects.apache.org/projects/hadoop.html.

[4] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. Computer Networks,
33(1-6):309–320, 2000.

[5] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the Web. Computer
Networks & ISDN Systems, 29(8-13):1157–1166, 1997.

[6] F. Cacheda, D. Fernández, and R. López. Experiences on a
practical course of web information retrieval: Developing a
search engine. In Proceedings of the Second International
Workshop on Teaching and Learning of Information
Retrieval (TLIR 2008), 2008.

[7] S. Chakrabarti. Mining the Web: Discovering Knowledge
from Hypertext Data. Morgan Kaufmann, 1st edition,
October 2002.

[8] M. Chau, Z. Huang, and H. Chen. Teaching key topics in
computer science and information systems through a web
search engine project. AMC Journal of Educational
Resources in Computing, 3(3), 2003.

[9] B. Croft, D. Metzler, and T. Strohman. Search Engines:
Information Retrieval in Practice. Addison Wesley, 1
edition, February 2009.

[10] J. Fernández-Luna, J. Huete, A. MacFarlane, and
E. Efthimiadis. Teaching and learning in information
retrieval. Information Retrieval, 12(2):201–226, April 2009.

[11] Galago. http://www.galagosearch.org/.

[12] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts
and Techniques. Morgan Kaufmann, 2nd edition, 2005.

[13] Java Sitemap Parser.
http://sourceforge.net/projects/sitemap-parser/.

[14] K. S. Jones and P. Willett, editors. Readings in Information
Retrieval. Morgan Kaufmann, 1 edition, July 1997.

[15] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46(5):604–632, 1999.

[16] M. Levene. An Introduction to Search Engines and Web
Navigation. Addison Wesley Publishing Company,
November 2005.

[17] C. D. Manning, P. Raghavan, and H. Schütze. Introduction
to Information Retrieval. Cambridge University Press, 1
edition, July 2008.

[18] F. McCown and M. L. Nelson. Agreeing to disagree: Search
engines and their public interfaces. In Proceedings of JCDL
’07, pages 309–318, June 2007.

[19] F. McCown, J. A. Smith, M. L. Nelson, and J. Bollen. Lazy
preservation: Reconstructing websites by crawling the
crawlers. In Proceedings of WIDM ’06, pages 67–74, 2006.

[20] S. Mizzaro. Teaching of web information retrieval: Web
first or IR first? In Proceedings of the First International
Workshop on Teaching and Learning of Information
Retrieval (TLIR 2007), 2007.

[21] Nutch. http://lucene.apache.org/nutch/.
[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The

PageRank citation ranking: Bringing order to the Web.
Technical report, 1998.

[23] M. Pedroni, T. Bay, M. Oriol, and A. Pedroni. Open source
projects in programming courses. SIGCSE Bulletin,
39(1):454–458, 2007.

[24] C. J. V. Rijsbergen. Information Retrieval.
Butterworth-Heineman, 2 edition, March 1979.

[25] Run Nutch in Eclipse.
http://wiki.apache.org/nutch/RunNutchInEclipse1.0.

[26] Sitemap Protocol.
http://www.sitemaps.org/protocol.php.

[27] Yahoo! Search BOSS.
http://developer.yahoo.com/search/boss/.

