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Abstract 

The current study was an attempt to discover the gold standard of inducing a state of confusion 

that is beneficial to the learning of complex science topics. Using a randomized controlled trial, 

participants received either one of three different types of confusion induction (deep-questions, 

intra-testing, breakdown scenarios) or a lecture based information delivery control. Results 

revealed that breakdown scenarios were the most beneficial in terms of pretest to posttest 

learning gains. Additionally, significant interactions were discovered among learning, confusion 

induction methods, and measures of individual differences (i.e., goal orientation and attributional 

complexity). Interpretations and applications are discussed. 

Keywords: affective sciences, productive confusion, individual differences, STEM learning 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

Not all confusion is productive: An investigation into confusion induction methods and their 

impact on learning 

According to the National Assessment of Educational Progress in the United States, 4th 

grade students scored a 154 (out of 300) in science in 2015 which is up from 150 (out of 300) 

back in 2011. Additionally, 8th grade scored a 154 (out of 300) in science compared to 152 (out 

of 300) back in 2011 (NAEP, 2015). Although these results are encouraging and clearly heading 

in the right direction, the news is not all good. According to the NAEP, in 2015 there was no 

change from 2011 in 12th grade students’ science scores. Furthermore, in 2015, 78% of twelfth 

graders scored below “proficient” in science. These results are suggesting that teachers still need 

more effective methods of instructing students in the STEM (science, technology, engineering, 

and math) disciplines. This raises the question: Are there effective methods of teaching STEM 

content that can be proven empirically, which can also be easily transferred into the classroom? 

Although it is beyond the scope of this paper to explore all possible methods of STEM 

instruction, there is empirical evidence (in and out of the laboratory) suggesting that emotions 

are inextricably linked to learning. More specifically, recent research has suggested that 

“productive confusion” can significantly increase learning gains when compared to various 

controls. To clarify, productive confusion is an instance of confusion that can be immediately or 

eventually resolved. Compare this to an instance of “hopeless confusion” in which learners are 

unable to resolve their experience of confusion.  This paper seeks to answer the following 

questions:  

RQ1: What are the most efficient methods of inducing productive confusion in order to 

increase STEM learning gains? 



 
 
 

RQ2: What role and to what extent do individual differences play in regards to confusion 

induction and learning of complex science topics? 

Confusion and Learning 

Research has not only discovered that emotions are present during learning, but certain 

emotions are inextricably linked to learning. In fact, the 21st century has been ripe with empirical 

evidence exploring links between emotions and cognition (D’Mello & Millis, 2014; D’Mello, 

Lehman, Pekrun, & Graesser, 2014; Lehman, D’Mello, Strain, Millis, Gross, Dobbins, Wallace, 

Millis, & Graesser, 2013). For example, Pekrun (2010) refers to the term “academic emotions” 

when referring to the emotions that learners experience during a broad range of educational 

activities. Other researchers have explored what are called “learning-centered emotions” (Calvo 

& D’Mello, 2011; Rodrigo & Baker, 2011). These learning-centered emotions consist of anxiety, 

boredom, confusion, curiosity, engagement/flow, frustration, happiness, and surprise. The focus 

of this paper is on one specific learning-centered emotion: confusion. The reason that we are 

focusing on confusion is because research has suggested that confusion is both prevalent in and 

important to learning.  

Imagine a scenario in which a student signs up for an online physics course. As this 

student progresses through the material at his/her own pace, he/she encounters videos and 

illustrations. Typically, when a student comes across a situation such as this, he/she may pay 

attention to the information being delivered. This alone is not always sufficient for learning to 

occur. Learners may watch the instructional video and report that they have understood the 

content presented in the video. However, learners may not have sufficiently engaged with the 

content of the video, which can lead to simply reinforcing the previously held misconceptions of 

the learner. This issue can be resolved fairly easily by simply embedding videos that directly 



 
 
 

address the prominent misconceptions that students hold about a certain topic (Muller, 2012). 

This fairly simple intervention creates greater uncertainty for learners because they must 

reconcile their previously held misconceptions and the information being presented, an effortful 

process which can result in deeper learning. 

Craig, Graesser, Sullins, and Gholson (2004) conducted a study in which participants 

interacted with an intelligent tutoring system on the topic of computer literacy. Results revealed 

that three specific emotions were related to learning. Boredom and frustration were found to be 

negatively correlated with learning. However, confusion was positively correlated with learning. 

Follow up tests revealed that only confusion was predictive of learning with more instances of 

confusion significantly predicting increased learning from students. This finding may initially 

seem counterintuitive due to the assumption that negatively-valenced emotions would negatively 

impact learning, as was the case for boredom and frustration. Subsequent research has replicated 

the finding that confusion occurs frequently during and can actually be beneficial to learning 

(Baker et al., 2010; Craig et al., 2004; D’Mello & Graesser, 2011; Graesser, Chipman et al., 

2007; Rodrigo & Baker, 2011; Lehman et al., 2008; D’Mello, Lehman, & Person, 2010; 

VanLehn, Siler, Murray, Yamauchi, & Baggett, 2003). 

The relationship between confusion and learning is also consistent with several theories 

that highlight the merit of impasses during learning (Brown & VanLehn, 1980; VanLehn et al. 

2003) and with theories that claim that cognitive disequilibrium is one precursor to deep learning 

(Graesser & Olde, 2003; Piaget, 1952). According to these theories, confusion is triggered when 

learners are confronted with information that is inconsistent with existing knowledge and 

learners are unsure about how to proceed. These events that trigger impasses place learners in a 



 
 
 

state of cognitive disequilibrium, which is ostensibly associated with heightened physiological 

arousal and more intense thought as learners attempt to resolve impasses.   

Ways of Inducing Productive Confusion 

If confusion under certain circumstances is desirable, then what is the best way to induce 

this desirable confusion? Although the results are equivocal thus far, there has been research 

exploring different methods of producing a state of productive confusion in learners. 

Educational research on cognitive conflict can shed light on potential methods to induce 

productive confusion (Limon, 2001). Cognitive conflict, a state that is similar to confusion and 

cognitive disequilibrium, is triggered when an individual is confronted with discrepant events, 

such as deviations from the norms, obstacles to goals, interruptions of action sequences, 

contradictions, anomalous information, unexpected feedback, and other forms of uncertainty. 

Limon (1995; as cited in Limon 2001), presented anomalous information to two groups of 

individuals who had high prior knowledge of historical problems. Results revealed that the 

presentation of anomalous data allowed the learners to develop a more elaborate and 

sophisticated response to questions. Furthermore, Limon and Carretero (1997; as cited in Limon 

2001), also showed that the presentation of anomalous information may be beneficial not only 

for learners with high prior knowledge but also for those that have low domain knowledge of a 

particular topic. Limon proposes that although anomalous information may not lead to radical 

change in the students' thinking, it may serve as a catalyst in the process of conceptual change.   

Furthermore, Graesser and McMahen (1993) explored question asking while participants 

read expository texts with varying degrees of anomalous information. The results from this study 

suggest that having students read text with anomalous information that presented an obstacle 



 
 
 

may have placed the students in cognitive disequilibrium, which in turn significantly increased 

higher quality questions. 

More recently, Lehman, D’Mello, and Graesser (2012) explored the complex relationship 

that exists between confusion and learning gains. Averaged across five different studies, the 

emotions that were most prevalent were: confusion (17%), frustration (13%), boredom (18%), 

engagement/flow (24%), delight (6%), surprise (3%), and neutral (19%). As can be seen from 

these results, confusion is a prevalent emotion during learning complex science. Further data 

mining revealed that certain elements of the tutorial dialogue were related to the occurrence of 

confusion (D’Mello, Craig, Witherspoon, McDaniel, & Graesser, 2008; D’Mello, Craig, Sullins, 

& Graesser, 2006). Confusion was found to occur when the tutor is less direct (hinting and 

prompting for information) and when the tutor provides negative feedback. These results suggest 

that the implementation of particular pedagogical strategies (e.g., difficult problems, hints, 

prompts) can induce confusion, which, if productively managed, can result in improved learning. 

Additional research has explored the use of contradictory information during the learning of 

critical thinking skills (Lehman et al., 2013; D’Mello et al., 2014). Specifically, the researchers 

tested the prediction that contradictory information can be a useful way of inducing confusion 

within the context of information presented via animated pedagogical agents. The results 

revealed that contradictions did successfully evoke confusion. However, the magnitude of 

confusion was dependent upon the source and severity of the contradiction. 

The results of the aforementioned studies demonstrate that there are a multitude of 

instructional methods that at some level produce a state of confusion in the learner. More 

specifically, methods such as leaving out critical information, presenting contradictions or 



 
 
 

adding puzzling information, vague hints and prompts, or the presentation of anomalous 

information. 

However, simply placing a learner in a state of confusion may not be sufficient enough to 

promote deep conceptual change within the learner. For example, Limon (2001) in a review of 

the cognitive conflict literature expresses concern over the fact that in the majority of cases, 

producing a state of cognitive conflict in a learner does not lead to a strong restructuring and 

consequently a deep understanding of the new information. This lack of effectiveness could be 

due to cases of confusion being left unresolved therefore leading to a path of negative affect 

(e.g., frustration and boredom) which in turn could lead to negligible learning gains. 

Resolution of Confusion 

Inducing a state of confusion in a learner only produces superficial learning gains in a 

large amount of cases. This superficial learning can be compared to Piaget’s beta level of 

adaptive responses in which learners only show partial modification of their understanding of a 

particular topic. One possible explanation for this lack of deep conceptual change could be due to 

the fact that the confusion that learners experience during these various learning tasks is never 

fully resolved. This unresolved confusion could lead to a state of hopeless confusion (as opposed 

to productive confusion), which results in an unsuccessful cycle of frustration and boredom. 

According to D’Mello and Graesser (2012), frustration occurs when an individual experiences 

repeated failures and is stuck. Persistent (or hopeless) confusion occurs when conflict resolution 

fails and an individual is unable to restore equilibrium. Conflict resolution requires people to 

stop, think, effortfully deliberate, problem solve, and revise their existing mental models (see 

Figure 1 for a theoretical explanation of productive versus hopeless confusion). 



 
 
 

 

Figure 1. Vicious versus virtuous learning cycle 

There is some evidence (albeit limited) stating the importance of conflict resolution (Lee, 

Rodrigo, Baker, Sugay, & Coronel, 2011). D’Mello and Graesser (2012) explored conflict 

resolution within the context of device breakdowns. Participants were presented with an 

illustrated text of a household device (e.g., cylinder lock) along with a description of the device 

breakdown (i.e., inducing confusion). In order to resolve confusion, a learner must search for the 

causes of the breakdown and find ways to fix the device. Successful conflict resolution will 

result in an extended mental model that accommodates the device breakdown. Results revealed 

that the participants who were in the device breakdown condition who also at least in part 

resolved their confusion significantly outperformed their unresolved counterparts on tests of 

device comprehension and processing of the breakdown scenarios. 



 
 
 

These studies suggest that hopeless confusion can lead to a student getting “trapped” in 

the negative affect cycle of frustration and boredom. More specifically, if students are unable to 

work through their confusion, they are likely to give incorrect responses to questions which 

eventually can lead to the student giving up or attempting to “game the system” when possible. 

Individual Differences 

Individual differences have been found to play a substantial role in the domain of 

learning and emotions (Sullins & Goza, 2013; Sullins, Goza, Smith, Moore, & Morrow, 2014; 

Sullins & Graesser, 2014). Limon (2001) states that researchers have focused exclusively on 

confusion inducing materials and largely have neglected the importance of learner individual 

differences. The impact of individual difference is crucial due to the fact that there is clearly no 

one-size-fits-all approach to learning. By investigating confusion induction through device 

breakdowns, D’Mello and Graesser (2014) found that successful confusion resolution varied 

based on learners’ scholastic aptitude.  

Furthermore, Sullins and Graesser (2014) explored student question generation as a result 

of being placed in a state of cognitive disequilibrium. The analyses revealed that motivation and 

personality traits (e.g., agreeableness and neuroticism) were significant predictors of instances of 

confusion.  

Finally, Lehman, D’Mello, and Graesser (2013) through a cluster analysis discovered that 

students differed with respect to cognitive ability and cognitive drive. Students with a 

combination of high cognitive ability and high cognitive drive benefited the most from the 

confusion induction (i.e., false feedback) and performed better on tests of transfer knowledge. 

Although it is beyond the scope of this paper to address all instances in which individual 



 
 
 

differences have been shown to be germane to learning, emotions, and confusion, it is clear that 

this is an area that warrants further investigation. 

In summary, the apparent benefits of emotions, inducing confusion, the resolution of 

confusion, and individual differences involved in confusion beg the following research 

questions: 

RQ1: What are the most efficient methods of inducing productive confusion in order to increase 

STEM learning gains? 

RQ2: What role and to what extent do individual differences play in regards to confusion 

induction and learning of complex science topics? 

Current Study 

Participants 

 Participants consisted of 178 students enrolled in an introduction to psychology course at 

a private liberal arts university located in the southern United States. Participants were given 

extra credit for their participation.  

Methods and Procedure 

 In this study, we conducted a laboratory-based randomized experimental trial with four 

levels of our independent variable (i.e., induction of desirable confusion): 1) Breakdown 

Scenarios 2) Deep Questions 3) Intra-testing, and 4) Control (i.e., information delivery) to 

determine impact on students' learning. 

After entering the lab, participants completed three tests of individual differences: 

Achievement Goal Questionnaire, Attributional Complexity Scale and Dweck’s Mindset Scale.  

The first measure of individual differences administered was the Achievement Goal 

Questionnaire (Elliot & McGregor, 2001). The Achievement Goal Questionnaire measures the 



 
 
 

following attitudes: (a) Performance Approach (alpha = .92) in which a student seeks to 

demonstrate or prove competence, particularly in the presence of an audience (e.g., “my goal in 

this class is to get a better grade than most of the other students”), (b) Performance Avoidance 

(alpha = .83) in which a student seeks to demonstrate or prove that he or she is not incompetent, 

particularly in the presence of an audience (e.g., “I just want to avoid doing poorly in this class”), 

(c) Mastery Avoidance (alpha = .89) in which the student seeks to better understand the material 

regardless of an external outcome (e.g., grades) but does so to avoid appearing less competent in 

front of others (e.g., sometimes I am afraid that I may not understand the content of this class as 

thoroughly as I’d like”), and (d) Mastery Approach (alpha = .87) in which the student seeks to 

better understand the material regardless of an external outcome in order to appear competent 

(e.g., I desire to completely master the material presented in this class).  

Participants then completed the Attributional Complexity Scale which was designed to 

investigate the different ways that people think about themselves and other people. The scale 

measures seven attributional constructs: 1) a motivational component 2) preference for complex 

rather than simple explanations 3) metacognition concerning explanations 4) awareness of the 

extent to which people’s behavior is a function of interaction with others 5) a tendency to infer 

abstract or causally complex internal attributions 6) a tendency to infer abstract, contemporary, 

and external causal attributions, and 7) a tendency to infer external causes operating from the 

past (Fletcher, Danilovics, Fernandez, Peterson, & Reeder, 1986). 

Following the Attributional Complexity Scale, participants were administered the 

Dweck’s Mindset Scale. This scale explored any influences of learners’ mindsets on desirable 

confusion. More specifically, Dweck proposed that learners have either a fixed mindset or 

growth mindset. In a fixed mindset, learners believe that their intelligence is a fixed quantity. 



 
 
 

Learners with a fixed mindset tend to agree with survey items like “you have a certain amount of 

intelligence, and there is not much you can do to change that.” Other learners believe that they 

have a growth mindset. In a growth mindset learners believe that intelligence has the potential to 

grow and improve in response to effort, good strategies, and help from others. In terms of 

confusion and cognitive disequilibrium, this can translate to whether students engage with 

difficult, confusing material and work to resolve their confusion or simply give up on the task 

and move on to something else. For example, a student with a growth mindset would be more 

likely to view an instance of confusion as a challenge or jumping off point to learn more and 

increase their understanding of the topic and subsequently their intelligence. 

In order to assess learning, a physics pretest was administered following the tests of 

individual differences. Two different versions of a multiple choice test were used (pretest and 

posttest; 13 questions each). Because productive confusion is designed to strengthen the 

understanding of how things work and why things are the way they are (opposed to the 

memorization of facts), these multiple choice tests were designed to test deep-level knowledge. 

The tests consisted of physics information that will be covered during the learning sessions. 

These physics tests were developed by the researchers associated with the proposed project (i.e., 

a physics professor at the university where the study was conducted). 

Participants were then randomly assigned to one of four levels of our independent 

variable (i.e., induction of desirable confusion): 1) Breakdown Scenarios 2) Deep Questions 3) 

Intra-testing, and 4) Control (no confusion induction method) to determine impact on students' 

learning. In all sessions, the participants watched pre-recorded “tutoring/content delivery” (See 

Figure 2). Physics was the content domain used in all conditions. 

 



 
 
 

 

Figure 2. Screenshots of physics video and interventions  

The physics content scripts were developed by a physics professor at the university where 

the research was conducted. In the Breakdown Scenario condition, participants were presented a 

scenario that did not work as expected. For example, I have two strings of equal length. One is 

thinner and lighter; the other is thicker and heavier. I tie them together, end to end, and attach 

the thick end to a stationary pole. I grab the thin end and pull the string taut. Now I start to move 

my hand up and down at a constant frequency, and waves travel down the string. The wave 

speed is higher on the thin string and lower on the thick string. You notice that there seem to be 

fewer crests on the thick string at any given time than on the thin string. What is wrong with this 

picture? The participant is then asked to explain the rationale (i.e., the physics principle) for why 

the scenario is not working.  

In the Deep Questions condition, participants were given questions that could only be 

answered by having a conceptual understanding of the material being covered (Craig et al., 

2012). For example, When a wave moves through water, how does that water move? Why does it 

move this way? The questions were classified as deep according to an existing question 

taxonomy (Graesser & Person, 1994; Graesser, Person, & Magliano, 1995). 



 
 
 

The Intra-testing condition required students to complete a mathematically based physics 

problem. See Figure 3 for an example of an intra-testing question. 

  

Figure 3. Example question from intra-testing condition. 

The control condition was an information delivery of the content comparable to a typical 

physics lecture. In order to control for time on task, participants in the control condition were 

asked to reflect on the information that had been presented. This time of reflection occurred at 

the same time and was the same length as the interventions in the three confusion induction 

conditions.  

Because the purpose of the experiment was to intentionally induce a state of confusion in 

the participants, all confusion induction methods were introduced before the participants had 

been presented the necessary information to arrive at a solution. For all conditions (i.e., 

breakdown scenarios, intra-testing, and deep questions), the learner was provided an answer to 

the manipulation (confusion induction) following the continuation of the multimedia video 

immediately following a predetermined time (~4 minutes). The four minutes was chosen in order 

to give participants time to attempt to solve the problem or question they received as part of the 



 
 
 

manipulation. The answer content was the same across all conditions. The participants were 

instructed to continue working on the problem even if they felt that have arrived at a solution.  

Following the learning intervention, participants completed the physics posttest 

(counterbalanced with the pretest) followed by the last individual differences test (Achievement 

Emotions Questionnaire). According to Pekrun, academic emotions are emotions tied directly to 

achievement activities or achievement outcomes (Pekrun, Frenzel, Goetz, & Perry, 2007). The 

Achievement Emotions Questionnaire is a multidimensional 24-scale instrument assessing 

students’ class-related, learning-related, and exam-related achievement emotions (Pekrun, Goetz, 

& Perry, 2005). Emotions measured within these categories include enjoyment, hope, pride, 

relief, anger, anxiety, shame, hopelessness, and boredom (alpha > .80 for 20 of the 24 scales). 

This scale will allow for the assessment of students’ general emotional profile during a variety of 

learning activities. For example, a student who frequently experiences enjoyment and hope 

during learning may respond differently to confusion induction methods than a student who 

frequently experiences anxiety and hopelessness. 

Results 

 Trained coders went back through each of the 178 video recording of each participant and 

noted when the participant started mind-wandering during the instructional video (i.e., stopped 

paying attention). Each participant video was coded by two coders to establish reliability. Any 

disagreements between the two raters were resolved through discussion. Based on this analysis, 

data were then divided into “high mind-wandering” and “low mind-wandering”. High mind-

wandering participants were those that spent more than 5% of the total time of the instructional 

video not paying attention. High mind-wandering participants are excluded from any subsequent 

analyses. Additionally, because all but two of the participants were classified as having a growth 



 
 
 

mindset (as measured by Dweck’s Mindset Questionnaire) this test of individual difference was 

excluded from any subsequent analyses.  

 RQ1: What are the most efficient methods of inducing productive confusion in order to 

increase STEM learning gains? 

A one-way analysis of variance showed a marginally significant difference in change 

scores (posttest-pretest) as a function of condition, F(3,98) = 1.796, p = .07 (one tailed), η2=.052 

(see Table 1 for a full list of means).  

Table 1. 
Change Score Means and Standard Deviations Across the Four Conditions 

 Means Standard Deviation 

Breakdown Scenarios 2.55 2.89 

Deep Questions 1.32 2.98 

Intra-testing .80 3.48 

Control .82 2.61 
 

 As can be seen from Table 1, a sizable difference existed between learning gains for 

those participants in the Breakdown Scenarios and the participants in the Control condition. 

Based on these observations, subsequent analyses excluded Intra-testing and Deep Questions.  

An independent samples t-test was conducted only on the participants in the Breakdown 

Scenario and Control. Results revealed a significant difference between participants in the 

Breakdown Scenarios (M = 2.55, SD = 2.89) and the participants in the Control condition (M = 

.82, SD = 2.61), t (55) = 2.316, p = .02, d = .63 (See Figure 4). 



 
 
 

 

Figure 4. Learning gains as a function of condition. 

 RQ2: What role and to what extent do individual differences play in regards to confusion 

induction and learning of complex science topics? 

To examine if any interactions existed between Attributional Complexity and Condition, 

a two way between subjects ANOVA was conducted. Results revealed no significant overall 

interaction, F (1,53) = .601, p = .442. Although there was no an overall significance between the 

two variables, follow up tests did reveal a significant pairwise comparison between Condition 

and Attributional Complexity. More specifically, participants with high Attributional Complexity 

in the Breakdown condition (M = 3.00) had significantly higher pretest to posttest change scores 

compared to those with high attributional complexity in the Control condition (M = .941), p = .03 

(See Figure 5). 



 
 
 

 

Figure 5. Learning gains for the condition by attributional complexity interaction. 

 A two-way ANOVA was performed to explore any possible interactions that exist 

between Goal Orientation (Mastery/Performance; Approach/Avoidance) and Condition. Results 

revealed no significant overall interaction, F (3,36) = .282, p = .838. Although there was not an 

overall significance between the two variables, follow up tests did reveal multiple significant 

pairwise comparison between Condition and Goal Orientation. Participants in the Breakdown 

Scenario with Performance Approach Goal Orientation (M = 4.60) learned significantly more 

than participants in the Control with Performance Approach Goal Orientation (M = .917), p = 

.019. Additionally, participants in the Breakdown Scenario with Performance Approach Goal 

Orientation (M = 4.60) learned significantly more than participants in the Breakdown Scenarios 

with Mastery Avoidance Goal Orientation (M = 1.00), p = .05 (See Figure 6). 



 
 
 

 

Figure 6. Learning gains for condition by goal orientation interaction. 

Discussion 

 Based on the aforementioned results it can be seen that there does appear to be a “gold 

standard” when attempting to induce a state of confusion that leads to significant learning gains 

when compared to a traditional lecture based format. Breakdown Scenarios led to significantly 

higher change scores compared to the control condition (i.e., lecture). No significant differences 

were found among the intra-testing condition, deep questions condition, and the control 

condition. However, given the significant pairwise comparisons that were discovered between 

Breakdown Scenarios and certain individual difference measures, it appears that Breakdown 

Scenarios are better suited for certain subsets of students. The results from the current study 

begin to shed light on the learner profile that benefits the most from confusion induction. More 

specifically, Breakdown Scenarios appear to be most beneficial for those learners who are either: 

1) high in Attributional Complexity or 2) have a Performance Approach goal orientation. 

 It is the opinion of the authors that a student high in attributional complexity would be 

more likely to consider multiple reasons for why a phenomenon would occur (in general). 

Because of this, the student might be more open to comparing multiple perspectives which in 



 
 
 

turn would help them resolve their confusion because they'd be willing to actively work through 

not only why one perspective was correct but also why another perspective was incorrect 

(reaching a deeper understanding and leading to learning).  

   Achievement goal theory refers to the reasons why individuals engage in a task. The 

results from the current study are in concert with previous research which has found that goal 

orientation is related to learning and learning strategy implementation.  Previous research has 

found, for example, that learners with mastery-approach goals (MAp) have shown positive 

emotions and interest, elaborative learning strategies and effective self-regulation, and help-

seeking and cooperativeness. However, the research on performance goals is less conclusive. For 

example, Ames, Maehr, Fisher, Archer, and Hall (1989) discovered that characteristics such as 

anxiety, disorganization, superficial learning habits, and low exam performance were associated 

with students who exhibit performance goals whereas other research has found that students with 

performance approach goals actually outperform students with mastery goals (Schunk, Meece, & 

Pintrich, 2014).  In terms of confusion induction and learning, the results can be explained by the 

following: 1) students completed these experiments in a social setting (i.e., in the presence of the 

experimenter) which in turn caused perception to be a factor. Because of this, students who enjoy 

demonstrating their competence to others benefited. Additionally, students who were worried 

about looking incompetent may generally not have enjoyed the instances of confusion 

(regardless of setting) because an instance of confusion inherently meant that there was a 

moment of uncertainty about one’s current knowledge. Because of this, students with avoidance 

goal orientation benefited the least from the Breakdown Scenarios (i.e., confusion induction). 

In a traditional learning environment, instructors are responsible for adapting to both the 

cognitive and affective states of learners as they face challenges and work to maintain 



 
 
 

motivation. However, the educational landscape is shifting to a more non-traditional format. 

Over a quarter of students (28%) have taken at least one online class and that number has been 

consistently growing (Allen, Seaman, Poulin & Straut, 2016). The internet (e.g., Google) is 

beginning to become the “go-to” source for information (Roscoe, Grebitus, O’Brian, Johnson, & 

Kula, 2016). Although this trend of moving away from human to human interaction has altered 

the traditional educational landscape, students still experience the same types of positive and 

negative emotions during learning (Calvo & D’Mello, 2011; Meyer & Turner, 2006; Pekrun, 

2010). The anticipated findings from the current study could have a potentially significant impact 

on both traditional and online education. Regardless of the presentation medium, productive 

confusion, an instance of uncertainty during learning that is successfully resolved, is one emotion 

that is essential for successful learning (Craig, 2012a; D’Mello & Graesser, 2012). If strategies to 

induce confusion that promote successful resolution could be identified and implemented with 

minimal effort, these could be widely beneficial for college courses, junior/high school lesson 

plans, e-textbooks, and online course content.  

It warrants mentioning that the authors are not arguing that all confusion works all of the 

time. It is the belief of the authors that confusion alone is not the catalyst to learning but the 

underlying cognitive mechanisms activated by the confusion are what lead to higher learning. As 

shown from the results, productive confusion does have the potential to propel some learners into 

a higher altitude of understanding, but for others it may produce negligible or perhaps even 

detrimental learning gains. The difficulty of course is attempting to identify the “zone of optimal 

confusion” for each individual learner. Although the current study did explore how certain 

individual differences impact confusion and learning (i.e., attributional complexity and goal 

orientation) more work needs to be done in this area to understand when confusion works and for 



 
 
 

who. Additionally, although these results are exciting and immediately applicable, caution 

should be taken in generalizing these findings to other domains. It is suspected that certain 

disciplines are better suited for the introduction of desirable confusion but further research is 

needed in this area. 

This desirable confusion paper sought to advance student learning of STEM disciplines.  

It is the hope of the authors that we have discovered a new supplemental method that is more 

inclusive and motivating than traditional STEM instructional approaches. 
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